Electrical Performance of a Piezo-inductive Device for Energy Harvesting with Low-Frequency Vibrations
Electrical Performance of a Piezo-inductive Device for Energy Harvesting with Low-Frequency Vibrations
Blog Article
This study presents the experimental evaluation of a piezo-inductive mechanical system for applications of energy harvesting with low-frequency vibrations.The piezo-inductive vibration energy harvester (PI-VEH) device is composed of a voice coil motor (VCM) extracted from a hard disk drive.The proposed design allows the integration of different element types as beams and masses.The dynamic excitations in the system produce a pendular motion carried out by a hybrid arm (rigid-flexible) that generates energy with the rotations (with a coil) and the beam strains (with a houston texans shorts piezoelectric material).
The electrical assessment was performed through different working modes classified as inductive, inductive with magnetic instabilities, and piezo-inductive.The instabilities in the harvester refer to external forces induced by two magnets that repel each other.The first two inductive configurations were designed as a function of three parameters (length, mass, instability angle) to debug these using the maximum output voltage.The selected experiments were conducted in a piezo-inductive configuration.
The results showed two effects on the output voltage—the first one is related to a system without resonances (higher broadband), and the second effect is associated with a multi-resonant system.As a final conclusion, it is pointed ventilationstejp out that the electrical performance can be improved with the magnetic instabilities since these considerably amplified the output voltages.